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To achieve the best structural model improvement using vibration test data, a major e!ort
has been made to identify poor modelling regions as a guideline for subsequent model
updating. The method presented and used in this paper is the energy error estimation
method. In the method the di!erence between analytical and test data based energies at
element scale is estimated to indicate any poor structural mass and sti!ness modelling. As
a result, poor modelling regions can be distinguished from those modelled correctly and the
improvement of the original structural model can be carried out e!ectively and accurately.
To demonstrate the application of this method, a full-scale tail-plane structure has been
studied by using simulated &&test'' modes as a simulated case and using measured modes as
a practical case. In both cases poor modelling regions of the original structural model have
been accurately located. Subsequently, a signi"cant improvement of the structural model
with a reduction of average frequency error from original 2)2% down to 0)1% for the
simulated case and from 4)6 to 1)8% for the practical case has been achieved.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the analysis of structural dynamics, accurate modal prediction is essential. For a practical
structure of large size and complex con"guration, however, modal errors due to
simpli"cation of structural modelling and poor estimation of structural parameters are
almost inevitable. Poor analytical modelling may also occur if undetected damage (fault)
exists in a structure causing overestimation of analytical sti!ness in the local region.
In order to improve the structural model e$ciently, various methods based on
available modal information from vibration testing have been developed in the last two
decades.

In the development of those methods, it has been noted that the major di$culty in
achieving a correct and unique solution is caused by the incompletion of test modes. One
type of the methods developed initially to tackle this problem was proposed by Baruch [1],
and by Berman and Nagy [2, 3], and was based on an optimal method, such as the
Lagrange multiplier method. These methods have the advantage of a simple and
non-iterative model updating procedure and accurate matching of the predicted
modes with measured modes. However, these methods reconstruct the original system
matrices without preserving their physical meaning of element connection. Consequently,
the reconstructed model would not guarantee the modal correction beyond the range of
measured modes.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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The second type of methods developed includes the two-response method [4], the
orthogonality and eigendata constraint methods [5], and the extended corrected modal
constraint method [6]. Unlike the aforementioned methods, only selected matrix elements
will be adjusted in these methods so that the original con"guration of system matrices will
be maintained. In practice however, the success of those methods depends heavily upon the
accuracy and number of available measured modes. This is a crucial limitation of the
methods when applied to practical problems. One of the reasons for limitation may be that
both the location and magnitudes of the modelling errors in an analytical model need to be
identi"ed simultaneously during model updating. To avoid such a di$culty, e!ort has been
made to tackle the problem in two steps, that is, the modelling error localization followed
by model correction. The error magnitudes of poorly modelled elements are not required at
the "rst step of identifying their locations. Hence, the conditions required for an accurate
result can be relaxed. By employing the sensitivity method for example, which may be
classi"ed as the third type of method, the sensitivity of eigendata errors [7] or orthogonality
errors [8] to a small change of individual matrix element can be calculated. A non-zero
sensitivity value indicates that the elements located in a corresponding region may need
improvement for accurate modal prediction. In practice, however, not all modelling errors
would be necessarily indicated by non-zero sensitivity values. This is mainly because the
limited number of available measured modes may be insensitive to some of the modelling
errors. On the other hand, not all non-zero sensitivity values necessarily represent the actual
modelling errors. This is mainly because some regions to which the response is sensitive to
modelling errors are actually correctly modelled. Normally, an iterative performance is
required for the model updating to converge.

Because of the similarity of poor modelling localization to structural damage localization
using modal test data, some methods may be suitable for both applications. In the early
1990s Hearn and Testa [9] used modal strain energy for damage detection in structures.
A contribution to the development of the method has also been presented by Lim and
Kashangaki [10]. Later further e!orts have been made to locate the structural damage
based on the ratio of change in the modal strain energy caused by the damage [11].
Although this type of method is e!ective and may be applied to locating poor modelling, its
accuracy especially in the elements adjacent to the damage region, needs further
improvement. In order to overcome this drawback, an energy error estimation method has
been proposed and applied to both model improvement [12] and damage localization [13]
by Guo and Hemingway. This method is based on estimating the analytical and modal test
data based kinetic and strain energies at the "nite element scale. The di!erences in
magnitude represent the existing energy errors and indicate poor mass and sti!ness
modelling or internal structural damage. In terms of modal strain energy calculation, this
method is similar to the aforementioned methods. However, this current method also
provides an additional measure to distinguish poor modelling or damage regions from
those correctly modelled. This makes a di!erence and has the advantage over similar
methods developed previously. Furthermore, from the estimated energy error, a correction
factor for each element can be created and used to improve each individual element and
hence the whole model.

In this paper, e!ort has been made to apply the energy error estimation method to
improve the model of a full-scale tail-plane structure. Both a simulated example using &&test''
data and a practical case using measured modes have been demonstrated. In both cases
poorly modelled regions of the original structural model have been located accurately.
Subsequently, signi"cant improvement of the structural model with a reduction of average
frequency error from 2.2% down to 0.1% for the simulated &&test'' case and from 4.6 to 1.8%
for the practical case has been achieved.
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2. THE ENERGY ERROR ESTIMATION METHOD

2.1. MODELLING ERRORS INDICATED BY ENERGY ERRORS

Using the "nite element method, the sti!ness and mass models for a structural system are
normally represented in matrices [K]

�
and [M]

�
assembled from element models [K

�
]
�
and

[M
�
]
�
, i.e.,
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�
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, (1)

where n represents the total number of elements in the system.
In a design process, unacceptable di!erences may be found between the predicted and

measured modes of a structural system. In such cases, it is usual to suspect that errors arise
from the structural models under the assumption that measured modes are reliable. The
correct, yet unknown sti!ness and mass models, [K]

�
and [M]

�
, may be then represented in

terms of the original sti!ness and mass matrices and their error matrices, [�K
�
] and [�M

�
],

as follows:
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The modelling errors would cause di!erence between the analytical and test-data based
energies, which are de"ned here as the strain and kinetic energy errors, �S
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system are represented below:
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where �
��

and �
��
are the jth analytical and measured eigenvalues, and ��� ]

��
and ��� ]

��
the

jth analytical and test-data based mass-normalized mode shape divided by �2�
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and�2�
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respectively. In the above equations, since each of the terms is scaled to unit value, both �S
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would be zero if [�K
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] and [�M

�
] were included. In the initial analysis stage,

however, [�K
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] are unknown, and hence [K]
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and [M]
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. In such cases, the system energy errors �S
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in a particular mode

can be approximated as shown below and become non-zero:
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where ��
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!�

��
and ���� �
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��
represent the frequency and modal errors

of the jth mode respectively.



650 S. J. GUO
It is assumed here that a spatially complete set of measurement is available. In practice,
analytical values will be employed to make the spatially incomplete measured modes
expanded and completed. Equation (4) shows that the system energy errors �S

�
and �¹

�
are

the sum of element energy errors �S
��
and �¹

��
in a particular mode, which are represented

below:
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For those correctly modelled elements, [�K
�
] and [�M

�
] do not exist and hence

equations (5a and b) give an accurate representation of their energy errors. Those energy
errors may not be zero but have small values due to modal error caused by poorly modelled
elements elsewhere. On the other hand, large energy error values normally arise from those
poorly modelled elements associated with [�K

�
] and [�M

�
]. As more test modes are

available and used, these element energy error values will be further increased and their
di!erence from the correctly modelled elements will be further enlarged. The element energy
errors in &&m'' number of test modes are represented as follows:
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Energy errors are thus used to indicate the possibility, or degree of, element modelling
errors.

2.2. LOCALIZATION OF POORLY MODELLED ELEMENTS

2.2.1. Initial localization

According to equations (5) and (6), the total strain and kinetic energy errors of a system
modelled by using &&n'' number of elements can be estimated by using &&m'' number of modes
as follows:
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. (7)

A ratio of element against system energy errors is then recommended to evaluate sti!ness
and mass modelling errors for each of the elements in percentage:

RK
�
"(�S

�
/ ��S�)100 (%) and RM

�
"(�¹

�
/ ��¹ �)100 (%). (8)

The RK
�
and RM

�
, which are used as indicators for locating poor modelling, would have

a signi"cantly higher magnitude for a poorly modelled element than for a correct one. Their
sign also indicates an underestimation (#) or overestimation (!) of the sti!ness or/and
mass in the analytical model.

Although RK
�
and RM

�
, provide useful indicators to localize poorly modelled elements,

the result is approximate and an uncertainty remains as to whether a small value ofRK
�
and

RM
�
, indicates a small modelling error or just accuracy error. Such uncertainty is especially
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of concern in the region adjacent to the poorly modelled elements. When this problem
occurs in the initial stage of modelling error localization it is di$cult to achieve high
accuracy and reliability in locating and improving poor modelling. In order to solve the
problem, further investigation has been carried out and a method to distinguish the poorly
modelled from correctly modelled elements has been proposed and described below.

2.2.2. Final localization

The method for locating poorly modelled elements is based on the sign rather than the
magnitude di!erence between the energy errors of poorly and correctly modelled elements.
From equations (5, 6), it is noted that the modal error ����

�
plays a major role in energy

error estimation. This is because it contains more explicit and useful information about the
location and magnitude of modelling errors than ��

�
. Since ����

�
in a poorly modelled

region is caused directly by a local modelling error, it should remain the same sign for any
mode, while in a correctly modelled region, where ����

�
is caused indirectly by modelling

errors beyond the region, the sign of ����
�
and hence �S

��
and �¹

��
may vary in a di!erent

mode. Such sign variation can be worked out from equation (5) and used as an indicator to
distinguish the correctly modelled elements from those poorly modelled ones. For example,
if the sign of �S

��
and/or �¹

��
for the ith element changes when using a di!erent mode, this

element sti!ness and/or mass may be identi"ed as correctly modelled. The element thus can
be excluded from the poor modelling region regardless of its initial RK

�
and RM

�
values. If

the sign remains the same as the mode varies, the element would be identi"ed as poorly
modelled and thus should be included in the poor modelling region for subsequent model
improvement. Although it has been noted that some modes may play a more signi"cant role
than others in modelling error detection, generally speaking the more measured modes that
are available and used, the more reliable would be the result expected. In practice however,
because of the inevitable measurement errors and incomplete measurements in both spatial
and modal co-ordinates, this method may not be guaranteed to "lter o! all correctly
modelled elements from the initially located poorly modelled regions. Nevertheless, this
method provides a useful tool to enhance the accuracy and reliability of the localization
result. It is simple, e$cient and accurate provided that the e!ect on ����

�
by measurement

errors is less than that by modelling errors.

2.3. IMPROVEMENT OF POOR ELEMENT MODELLING

After localizing the poorly modelled elements, model improvement may be carried out
with con"dence by evaluating the sti!ness and/or mass error matrix [�K

�
] and [�M

�
], and

then by modifying the original [K
�
]
�
and/or [M

�
]
�
. Assuming [�K

�
] and [�M

�
] are

a fraction of [K
�
]
�
and [M

�
]
�
of each element, respectively, they may be approximated by

using the estimated RK
�
and RM

�
as follows:

[�K
�
]"FK

�
[K

�
]
�

and [�M
�
]"FM

�
[M

�
]
�
, (9)

where FK
�
"F

	
�RK

�
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with F

	
and F

�
representing weighting factors

for sti!ness and mass modelling improvement respectively.
An initial model improvement can be achieved by substituting the [�K

�
] and [�M

�
]

estimated above back into equation (2). Based on the improved model, further improvement
can be carried out by repeating the above procedure. As the model is further improved, the
remaining [�K

�
] and [�M

�
], and henceRK

�
and RM

�
, would become smaller. Such iterative
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implementation can be carried out until the estimated RK
�
and RM

�
converge to a speci"ed

small value. Consequently, the accuracy of predicted modes based on the improved model
would be increased to achieve a minimum di!erence from the measured modes. Such
a mode di!erence is assessed here by an average frequency error �f and the mode shape
error �� represented as follows:
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3. APPLICATION TO A TAIL-PLANE STRUCTURE

A full-scale tail-plane structure of 5)95 m in span and 1)83 m in mainframe length as
shown in Figure 1 was used for demonstration. The tail-plane is suspended by an elastic
bungee at the front of its main frame and seated on two vertical beams at its rear. In the
current demonstration of model improvement, the tail-plane structural modelling was
largely simpli"ed by using 3-D beam elements as illustrated in Figure 2.
Figure 2. The analytical beam model of the tail-plane structure.

Figure 1. A view of the tail-plane set-up for vibration test.



TABLE 1

Predicted frequencies (Hz) of the tail-plane analytical model

Mode no. 1 2 3 4 5 6 7 8 9

Symmetric 1)77� 9)83� 11)83 24)03 41)43 42)13 60)10 68)31 93)00
Antisymmetric 4)77� 5)39 11)66 26)67 43)33 58)48 61)49 72)08 89)59

�Rigid-body mode.
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The structure was represented by a sti!ness matrix of 192�192 order assembled from
each of the beam elements having a 12�12 order sti!ness matrix. Similarly, a mass matrix
of the same order assembled from a nodal mass matrix of 6�6 order was created to
represent the mass properties of the structure. Considering the symmetric con"guration of
the structure, only half of the structure was modelled. The modal analysis for symmetric and
antisymmetric modes was carried out separately. The "rst nine modes with frequency values
listed in Table 1 were obtained as the analytical results.

3.1. MODEL IMPROVEMENT USING SIMULATED &&TEST'' MODES (CASE 1)

This "rst example is intended to demonstrate the analysis procedure of the method. To
obtain a set of simulated modes as our &&test'' data, a &&test'' structural model was created.
Taking the same con"guration and beam modelling as the analytical model shown in
Figure 2, the &&test'' structural model has 10% more mass in element 11, and 10% less
bending and torsion rigidity in elements 9 and 10. To keep the con"guration symmetrical,
the same di!erence as above was made on the opposite (right) side of the &&test'' model. In
this example, although eight symmetrical modes of the &&test'' structure have been predicted
as shown in Table 1, only the six #exible modes, i.e., modes 3}8 were used as available &&test''
modes in the model improvement procedure as described below. In this idealized example,
the &&test'' modes are assumed to be spatially complete and noise-free. Hence, an excellent
modelling error locating result is expected.

3.1.1. Modelling error localization

Using the analytical model and the six &&test'' modes in equations (6}8), an initial energy
error distribution of the analytical model was obtained as shown in Figure 3. The
signi"cantly large values of RK

�
and RM

�
indicate that poor sti!ness modelling is most

likely to occur in elements 9 and 10, and poor mass modelling in element 11. Due to
symmetric con"guration, similar modelling errors are also expected on the opposite side of
the analytical model. It is noted that non-zero RK

�
and RM

�
values also appear beyond

those elements. However, they could be caused by approximation in the method or very
small modelling errors since their values are signi"cantly small.

In order to further distinguish the poorly modelled elements from the correctly modelled
ones, e!ort has been made to clear the above diagram of initial modelling error distribution.
Using equation (5) in this second stage, the sign of energy error �S

��
and �¹

��
for each

element and mode was obtained. Figure 4 shows that for all elements apart from 9 and 10,
the sign of �S

��
changes at least once when a di!erent mode is used. This reassures us that

only the sti!ness of elements 9 and 10 is poorly modelled. Similarly, Figure 5 shows that
only elements 6 and 11 contain mass modelling errors, while the other possible errors
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Figure 3. Energy errors indicating the modelling error distribution.

Figure 4. The sign variations of �S
��
: (a) along the tail-plane; (b) along the supporting beams.
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identi"ed initially can be removed from Figure 3. As the result, a much clearer view of
modelling error distribution can be obtained as shown in Figure 6. Compared with the
analytical model, the negative RK

�
and RK

��
indicate that the &&test'' structure actually has

smaller sti!ness within its elements 9 and 10 region, while the positive RM
�
indicates that

more mass actually exists in the region of element 11.



Figure 5. The sign variations of �¹
��
: (a) along the tail-plane; (b) along the supporting beams.
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Figure 6. A clear view of modelling error localization.
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3.1.2. Model improvement

Having localized the modelling errors as shown in Figure 6, the subsequent model
improvement may be carried out by using equations (2), (8) and (9) in an iterative manner or
minimizing �f in a trial and error approach. In this example, the above estimatedRK

�
, RM

�
and equation (9) with weighting factors F

	
"0)4 and F

�
"0)09 were used to evaluate [�K

�
]

and [�M
�
], which were then substituted into equation (2) to improve the original [K]

�
and [M]

�
.



TABLE 2

Evaluated factors for model improvement during iteration

Iteration no. 1 2 3 4

F
	
�RK

�
for element 9 !0)13 0)02 !0)0036 "!0)11

F
	
�RK

��
for element 10 !0)09 !0)02 0)0002 "!0)11

F
�
�RM

��
for element 11 0)056 0)027 0)007 0)002 "0)092

TABLE 3

Comparison between analytical and 00test11 frequencies (Hz)

Mode no. 1� 2� 3 4 5 6 7 8

Original f
�

1)77 9)83 11)83 24)03 41)43 42)13 60)10 68)31
Error �f (%) 0)91 0)60 2)87 0)54 3)45 3)74 0)10 2)66
Improved f

�
1)76 9)77 11)52 23)90 40)09 40)68 60)04 66)48

Error �f (%) 0)0 0)02 0)17 0)00 0)10 0)17 0)00 0)09
&&Test'' f

�
1)76 9)77 11)50 23)90 40)05 40)61 60)04 66)54

�Rigid-body mode.
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Since the model could not be completely corrected in one performance as above, the same
procedure were repeated based on the previously improved model until the remaining
errors became smaller than a speci"ed value. In this example, the iteration was carried out
until the evaluated F

	
�RK

�
and F

�
�RM

�
became less than 3% of their "rst iteration

values as shown in Table 2. In the model improvement, F
�
�RM

�
for element 6 was too

small and hence ignored. The sum of F
	
�RK

�
and F

�
�RM

�
from above iterations gives

a ratio of the "nal evaluated [�K
�
] against the original [K]

�
and [�M

�
] against [M]

�
respectively. According to equations (2) and (9), the result shows that the original sti!ness
for elements 9 and 10 should be reduced by 11% and the original mass in element 11 should
be increased by 9)2% as the "nal improvement. As a result, the modelling errors in the
analytical model have been reduced from the initial 10% down to less than 1%. Compared
with the &&measured'' modes shown in Table 3, mode errors of the improved analytical
model have been largely reduced. For example, the average mode error for modes 3}8 has
been reduced from 2)23 to 0)09%.

3.2. MODEL IMPROVEMENT USING MEASURED MODES (CASE 2)

In this second example, improvement of the original analytical model shown in Figure 2
was carried out by using only four measured modes from a vibration test of the tail-plane
shown in Figure 1. In the vibration test, most of the 29 accelerometers were mounted along
the front and rear spars of the tail-plane as shown in Figure 7 and limited to measuring the
vertical movement (Table 4). By applying the quadratic interpolation method, the
out-of-plane measurements were used to obtain the intermediate unmeasured
displacements, i.e., the out-of-plane vertical and torsional displacements and span-wise
bending slopes. Due to the lack of in-plane measurements however, analytical values were
used as the displacements at the intermediate unmeasured d.o.f.'s, i.e., in-plane translations



Figure 7. Top view of the measurement points on the tail-plane.

TABLE 4

Measured frequencies (Hz) from the tail-plane vibration test

Mode no. 1 2 3 4 5 6 7 8 9

Symmetric 1)76� 9)64� 13)02 23)71 * * 59)35 65)86 *

Antisymmetric 5)19� 5)39 * 25)73 44)48 * * * 81)33

� Rigid-body mode.
* Not measured.
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and yaw. However, it should be noted that these analytical values do not contribute to any
energy errors. Hence, some compromise in the performance of the error localization and
accuracy of the model improvement can be expected.

3.2.1. Modelling error localization

In this example, considering the symmetric vibration case and half of the analytical
model, only the four measured symmetric modes 3, 4, 7 and 8 were used in the analysis. The
rest of modes are listed only for comparison. By applying the EEE method, the total strain
and kinetic energy errors on both sides of the analytical model were estimated from
equations (6) and (7) and listed in Table 5. It shows that the strain energy error RK

�
on the

left side of the model is obviously larger than that on the right side. Hence, large sti!ness
modelling errors are likely to exist on the left side of the analytical model. It also shows that
the kinetic energy error RM

�
is much lower than the RK

�
on both sides of the model. This

indicates that the overall mass modelling errors in the analytical model is very small when
compared with the sti!ness errors.

To have a detailed view of the modelling error distribution,RK
�
and RM

�
in each element

of the model were estimated by using equation (8) and the results were shown in Figure 8. It
can be seen fromFigure 8(a) that the sti!ness errors are most likely to be located in elements
9 and 10 on the left side, and also at the root elements of the analytical model. The negative
sign of the errors indicate smaller sti!ness in the actual structure than that being modelled.
Figure 8(b) shows an even distribution of RM

�
indicating mass modelling errors of the

model. Since the maximum RM
�
value reaches only about 1)5% of the sum of RM

�
values,

which is very small when compared with the RK
�
shown in Figure 8(a), the mass modelling



TABLE 5

¹otal energy errors on both sides of the analytical model

Total energy errors Left side Right side

Strain �S 13)30 3)60
Kinetic �¹ 1)61 1)37
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Figure 8. (a) Sti!ness modelling error distribution indicted by RK
�
. (b) Mass modelling error distribution

indicated by RM
�
.
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errors are ignored in the subsequent model improvement. Although the modelling error
distributions obtained so far are reasonably clear, it would be desirable to have a clearer
view for more accurate localization of the modelling errors, especially in the regions with
relatively low RK

�
values. At this stage, equation (5) was used to get the sign variation of

element energy error for each of the modes as shown in Figure 9 (elements beyond 13 are
excluded due to their small errors as shown in Figure 8).

Figure 9(a) shows that only the signs of strain energy errors for elements 1 and 9}12
remain the same for all the modes. This indicates that only those elements were poorly
modelled in terms of sti!ness, and the rest of the elements were correctly modelled. Figure
9(b) shows that none of the kinetic energy errors remains the same sign for di!erent modes.
This ensures that the original mass modelling is good enough and thus no improvement is
required in this case. Focusing on the sti!ness modelling errors and removing those fault
errors initially identi"ed in Figure 8(a), a clearer view of locations of sti!ness modelling
errors for the left side of the tail-plane was obtained as shown in Figure 10.



Figure 9. Elemental strain energy error (a) and elemental kinetic energy error (b) for each mode.

Figure 10. Improved localization of sti!ness modelling errors.
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The negative values of RK
�
shown in Figure 10 indicate that some local regions of the

tail-plane actually have smaller sti!ness than that of the original analytical model.
Examination of the local structure where elements 9 and 10 were positioned as shown in
Figure 11, proves that the large sti!ness modelling errors located in this region are due to
local structural damage. The small modelling errors remaining in elements 11 and 12 may
be due to the e!ect of the neighbouring structural damage and approximation of the
method. The large modelling error of element 1 was likely caused by the model
simpli"cation of the junction between tail-plane and its main supporting beam as shown in



Figure 11. Structural damage on one side of the tail-plane.
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Figures 1 and 2. Those modelling errors caused signi"cant di!erences between the predicted
modes from the original model and measured modes of the structure as shown in Table 6.

3.2.2. Analytical model improvement

3.2.2.1. First improvement. In order to improve the original analytical model, attention
was then focused on the poor modelling regions to evaluate the sti!ness error matrix
[�K

�
] for elements 1, 9 and 10 by using equation (9). By substituting the obtained [�K

�
]

into equation (2), an improved [K]
�
of 20% sti!ness (EI, GJ) reduction for elements 1 and 9,

and 22% reduction for element 10 was obtained. Consequently, the average mode
errors of the improved analytical model were reduced, from the original �f"4)6 to 3)8%
and from ��"14)3 to 13)3% as shown in Table 6. After this above "rst improvement
however, sti!ness modelling errors still remained in the analytical model as shown in
Figure 10.

3.2.2.2. Second improvement. If the above procedure was repeated based on the improved
model, a further 20% sti!ness reduction for elements 1 and 9 and 40% reduction for
element 10 were estimated. Subsequently, a further reduction of the remaining sti!ness
modelling errors was made after the second improvement as shown in Figure 10. However,
compared with the measured modes again as shown in Table 6, it was noted that the
average �f was slightly increased from 3)81 up to 3)90% although the average �� was
further reduced from 13)25 to 10)15%. It was also noted that such a large reduction of
sti!ness would not give a good representation of the actual structure. It was then suspected
that some modelling errors remained unidenti"ed in the regions beyond those located so
far. The failure to locate those errors may be mainly because of the lack of measurement
along the supporting frames of the tail-plane. Hence, an alternative approach for further
model improvement has to be considered.

3.2.2.3. Further improvement. In this example, it was assumed that the measured
frequencies were more accurate and reliable than mode shapes. Thus, an approach based on
the analysis of frequency sensitivity to the variation of element sti!ness parameters was



TABLE 6

Comparison between analytical and measured modes

Symmetric modes Antisymmetric modes

Mode no. 3 4 7 8 4 5 9
Average

mode error

Original f (Hz) 11)83 24)03 60)10 68)31 26)68 43)33 89)59 �f"4)56%
��"14)24%

1st Improved f by
EEE method

11)74 23)96 60)02 65)86 26)45 43)29 88)82 �f"3)81%
��"13)25%

2nd Improved f by
EEE method

11)72 23)94 59)98 64)80 26)37 43)28 88)22 �f"3)90%
��"10)15%

Further improved 13)30 23)80 60)20 66)00 25)80 43)20 85)60 �f"1)80%
Measured f

�
13)02 23)71 59)35 65)86 25)73 44)48 81)33

Figure 12. An updated analytical model for further improvement.
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used. In the analysis, only measured frequencies were used as the reference base to minimize
the e!ect of inadequate measurement of mode shapes on further model improvement.

Firstly, the region of the junction between the tail-plane and its main supporting frame
was focussed upon. The analytical model was updated by adding two more elements
between nodes 1}15 and 1}18 as shown in Figure 12. This updated model should give
a more realistic representation of the actual structure and provide more parameters for
sensitivity analysis and model improvement in the region.

In the analysis, although all measured frequencies were considered, attention was paid
mainly to the "rst symmetric mode and all the antisymmetric modes, which had relatively
large errors. It was found that the "rst symmetric mode was sensitive to the bending sti!ness
of the new elements 1}15, 1}18 and element 20}21 at the rear. The "rst antisymmetric mode
was also sensitive to the new elements 1}15, 1}18, but the third mode was more sensitive to
elements 19}20 and 20}21. From the sensitivity analysis, bending and torsion sti!ness of the
new elements 1}15, 1}18 was determined to be 16)53 Nm� and the bending sti!ness of
element 19}20 was reduced from 6)612 to 4)959 N m�. Following the above sti!ness
updating, the mode errors were further reduced. A comparison between the frequencies of
the original model, improved model using EEE method and further improved model using
sensitivity method is shown in Table 6.
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4. CONCLUDING REMARKS

The energy error estimation method provides a feasible and e$cient tool for model
improvement based on a set of incomplete measured modes. The method is applicable to
locating the regions of analytical modelling errors or structural damage. From the
investigation of this current paper, the following conclusions can be reached.

� By using this method, both the sti!ness and mass modelling errors of an analytical
model can be identi"ed and localized.

� In the initial localization of modelling errors, the result was approximate due to the
e!ect of the limit of the method and available measuredmodes. However, an additional
measure proposed in this method can increase the localization accuracy. This is the
major advantage of the method in terms of accuracy.

� Although the method depends upon the quality of measured modes, the regions with
signi"cant modelling errors such as the damage region can be distinguished from
&&good'' modelling regions.

� In the regions such as the supporting frames of the tail-plane where few measurements
were made, the estimated energy errors will not be su$ciently accurate to indicate
modelling errors. In such cases, sensitivity analysis based on measured frequencies
provides an e!ective alternative.

� The model improvement is restricted only to those regions where modelling errors
have been identi"ed. This ensures the reliability and accuracy of the improved model.

� The improved analytical model retains its original matrix size and con"guration and
thus retains the physical description of the system.

Finally, it has been noted in this method that some modes may play a more signi"cant
role than others in locating modelling errors. This may raise a concern about mode
sensitivity of the method. Generally speaking, the e!ect of mode on the accuracy of the
result would depend upon the structural con"guration and modelling error locations.
Although in practice there is normally little choice in the very limited available measured
modes, an investigation into this modal sensitivity problem is recommended, but is beyond
the scope of this paper.
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